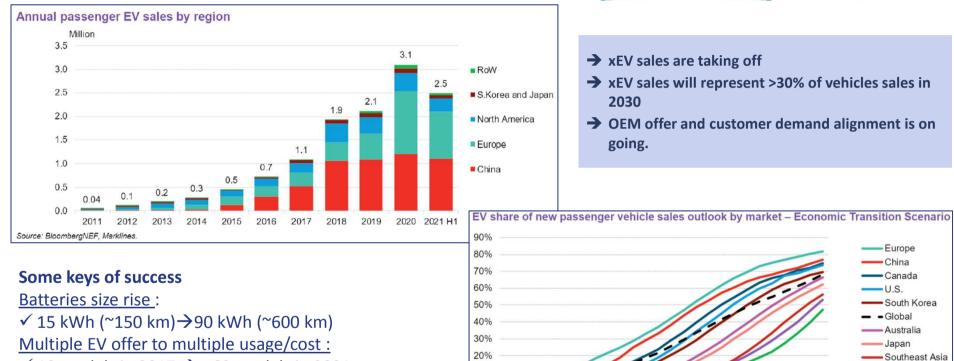


Smart charging et V2G : vers des VE smart-grid ready

Comité national

Journée Mobilité Electrique Mardi 19 octobre 2021

Market tendencies Use cases, Vehicle Grid Integration Levels Normative and reglementary context On Board Impact for VGI ready EVs


MARKET TENDENCIES

MARKET TENDENCIES

MARKET OVERVIEW

10%

0% =

2020

Multiple EV offer to multiple usage/cost : \checkmark 10 models in 2017 \rightarrow +60 models in 2021 <u>Charge point accessibility improvement</u> Public policy

Source: BNEF. Note: EVs include battery-electric and plug-in hybrid electric vehicles. Battery-electric vehicles represent 88% of total electric vehicle sales in 2030. Europe includes the EU, the U.K. and EFTA countries.

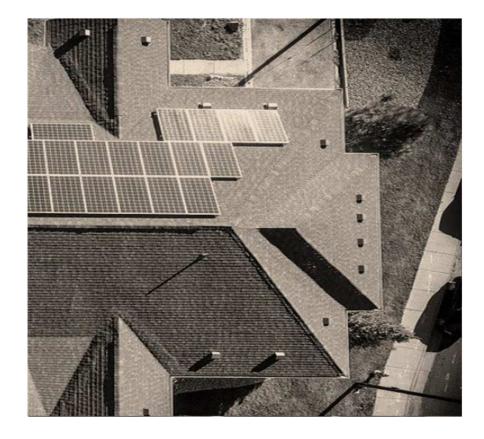
2030

2035

2040

2025

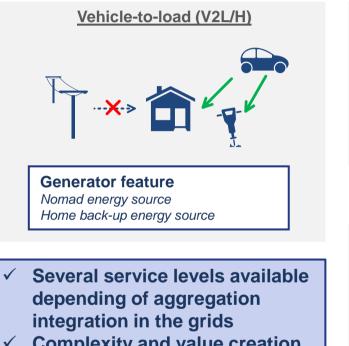
Ampère 200 lans


STELLANTIS

----- India Rest of World

Vehicle Grid Integration STEPS

& USE CASES



VEHICLE GRID INTEGRATION LEVELS


/EHICLE GRID INTE	GRATION LEVELS			Ampère	STELLANTIS	
CHARIN 2020-06-26 V5.2	CCS with ISO/ISO 1511 This technology is prep Grid-compliant Charging EV and EVSE are compliant with the local requirements, guidelines and regulations.	of Grid Integration that can 8-20 is the key enabler of G bared for a wide range of us Level 1 - V1G Controlled Charging • The charging event can be influenced regarding the charging power and can be shifted in time remotely by DSO (with highest priority), CPO, EV user, EV or home energy management (HEM). • The EV is capable to wake up for defined start/stops. • Reaction timings are defined. • EV/EVSE, HEM consider variable power settings.	Frid Integration and is ready	 Level 3 – V2H Bidirectional Charging Energy transfers between EVs battery and the home / customer system. Energy transfers are motivated by sustainability or economical reasons (storage and usage of power, generated by local PV panels or similar). Supports behind the meter (BTM) use cases 	Level 4 – V2G Aggregated (bidirectional) charging • The EV and the EVSE fulfil functions that go beyond the customer's own energy system (bidirectional energy transfers, aggregators qualification, full balancing market services, economic interests of the EV owner). • Supports in front of the meter (FTM) use cases • Swarm qualification/ aggregation across larger area (entire state or country)	
Table I source in seconds.	Various local regulations per country (e.g. grid codes, IEC61851-1, IEC 60364 series,)	Local regulations EV and EVSE • PWM signal, IEC 61851 • DIN-SPEC 70121 (for DC) EVSE and grid (Utility, CPO,) • OCPP 1.6 • Demand-response • Opt-out possibilities	Local regulations EV and EVSE • ISO/IEC15118 Ed1 • Telematics EVSE and grid • OCPP 1.6f • See level 1 • ToU	 Local regulations EV and EVSE See level 2 ISO/IEC15118-20 EVSE and grid See level 2 EEBus Many requirements still missing 	Local regulations EV and EVSE • See level 2 EVSE and grid • See level 3 • Many requirements still missing	
	Grid connection	Grid connection Grid integration				

EV - electric vehicle, EVSE - electric vehicle supply equipment, DSO- distributed system operator ,CPO - charge point operator

BIDIRECTIONNAL USE CASES

 Complexity and value creation increase with deeper grid integration

NORMATIVE AND REGLEMENTARY CONTEXT

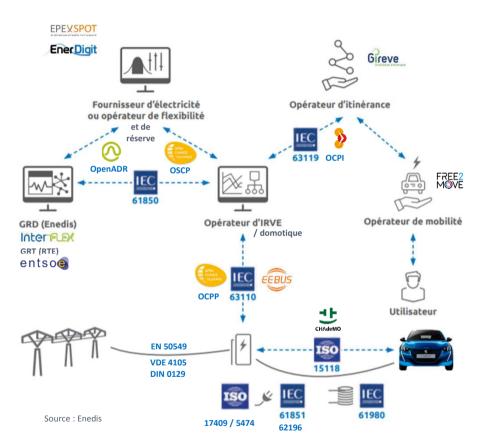
NORMATIVE CONTEXT

Different standards cover the complete system

<u>Charging Spot – EV :</u>

- ✓ Topology of charging system (incl. plugs types)
- ✓ Electric Security during recharge/discharge
- ✓ Communication protocol

Charging Spot to Back end :


- ✓ Charging infrastructure management
- ✓ Added value services (smart charge, ...)

Back end to back end

- ✓ Roaming of charging payment
- ✓ eMSP
- ✓ Energy service activation/control

DER context

- ✓ Grid Code
- ✓ Installation specification

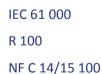
Ampère 200 lans

STELLANTIS

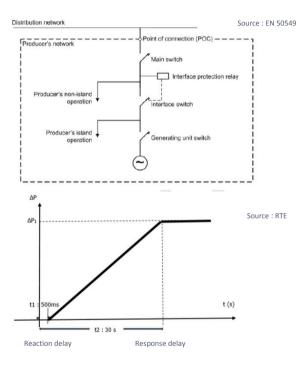
NORMATIVE CONTEXT

Constraints for Bidirectionnal charging/discharging

Grid connection compliancy


- Local Grid codes (Volt./Freq. deviation survey/support/immunity)
- ✓ LV generator in // of LV grid topology
- ✓ DSO specific

Services rules (Front/Behind the meter)


✓ Performance (speed, precision, availability, controllability, ...)

Electric compliancy (Front/Behind the meter)

- ✓ Electric source quality definition, EMC
- ✓ Vehicle design compliancy
- ✓ Security of installation

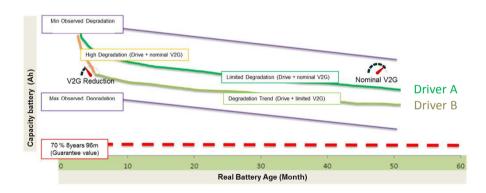
On Board Impact for VGI ready EVs

Battery ageing impact

Additional cycling due to VGI

- ✓ Depends of grid service
- ✓ Power services (FCR, load management, ...)
- Energy services (Self consumption, capacity, flexibility, ...)

OEM enabler


- ✓ Battery Warranty preservation (<u>customer</u> <u>acceptability</u>, OEM Warranty risk mitigation, ...)
- Limitation of VGI service mechanism (API, VGI authorisation, ...)
- ✓ Depends of Driving type, climate, ...
- ✓ Depends of Chemistry, BoL* design (PRF), ...

Annual energy discharged for a battery electric vehicle

Source: BloombergNEF. Note: Assumed 16,000 annual km average driving and 0.19kWh/km, warranty of 160,000km over 8 years. In Figure 12 V2G usage assumed based on daily usage of 15kWh, real values will vary.

Driver A : Low average km/year, moderate climate, ... Driver B : Sportive/high average km/year, hot climate, ...

*Beginning of Life battery characteristics

12

Charging Topology AC vs DC

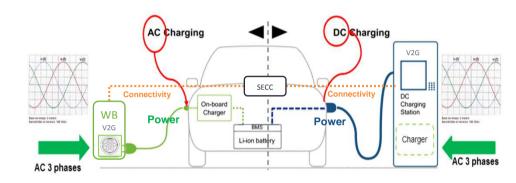
V2X DC

- ✓ No additional HW cost on vehicle
- ✓ High Infrastructure cost (~3000€/5000€)

→ Suitable for Experiment/Early-adopter/B2B Advantage

- ✓ HLC* communication & HW already existing (Chademo Experience)
- ✓ Grid Code & Safety compliance mainly done by EVSE

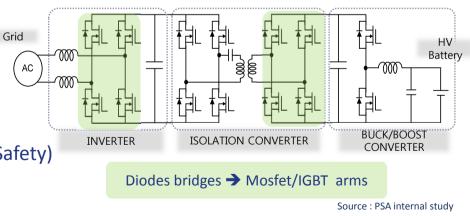
V2X AC


- ✓ Low infrastructure cost (~+1000€)
- ✓ Marginal cost for OBC

→ Suitable for Mass Market

Issues

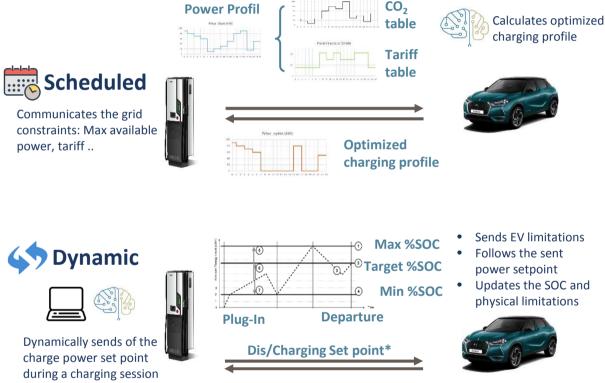
- ✓ Extra Cost / Volume in the OBC & EVSE (G.C&Safety)
- HLC* & Interoperability \checkmark


*High Level Communication = CPL (ISO 15118)

Ampère 200 lans

STELLANTIS

13



AC Bidirectional On Board Charger (B-OBC)

EVSE-EV Communication protocol

ISO 15118-20 example

- ✓ 2 control modes
- ✓ Request/Response messages pairs
- Use Preference can be distribute by OEM back-end, or CPO backend.
- ✓ Grid Following or Grid Forming control (Off-Grid)
- ✓ Phase Balancing
- ✓ P/Q power control
- ✓ Secured communication (TL1.3)
- ✓ SECC/EVCC ECUs to store protocol
- ✓ With HSM* to store Certificates

Ampère 200 lans

2 see

*Depends of AC or DC

STELLANTIS

EVSE impact

<u>Input</u>

- ✓ EV+EVSE are considered as DER system
- ✓ EV+EVSE couple must be compliant with Grid Code & connection rules (local)

Ampère 200 lans

Basic task

- Store local grid code (installation)
 - Image: A state of the state
 - Calculate P/Q set point (grid code)
- 🔀 🖌 Power conversion
- ✓ Couple / decouple to rest of the grid

Main function

- ✓ Anti Islanding protection
- ✓ Decoupling / Re-coupling rules
- ✓ Response to Frequency deviation
- ✓ Response to Voltage deviation
- ✓ Immunity to Hz/V events

DER compliancy

✓ Are independent of Ancillary or local services

STELLANTIS

Questions ?